Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

نویسندگان

  • Li Lin
  • Shulan Tian
  • Shawn Kaeppler
  • Zongrang Liu
  • Yong-Qiang (Charles) An
چکیده

Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools.

Plant seeds prepare for germination already during seed maturation. We performed a detailed transcriptome analysis of barley (Hordeum vulgare) grain maturation, desiccation, and germination in two tissue fractions (starchy endosperm/aleurone and embryo/scutellum) using the Affymetrix Barley1 GeneChip. To aid data evaluation, Arabidopsis thaliana MapMan and PageMan tools were adapted to barley. ...

متن کامل

Metabolic and transcriptional regulatory mechanisms underlying the anoxic adaptation of rice coleoptile

The ability of rice to germinate under anoxia by extending the coleoptile is a highly unusual characteristic and a key feature underpinning the ability of rice seeds to establish in such a stressful environment. The process has been a focal point for research for many years. However, the molecular mechanisms underlying the anoxic growth of the coleoptile still remain largely unknown. To unravel...

متن کامل

Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.

Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) gen...

متن کامل

FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis.

Accumulation of storage compounds in the embryo and endosperm of developing seeds is a highly regulated process that allows seedling growth upon germination until photosynthetic capacity is acquired. A critical regulatory element in the promoters of seed storage protein (SSP) genes from dicotyledonous species is the RY box, a target of B3-type transcription factors. However, the functionality o...

متن کامل

Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution.

Surveys for conserved noncoding sequences (CNS) among genes from monocot cereal species were conducted to assess the general properties of CNS in grass genomes and their correlation with known promoter regulatory elements. Initial comparisons of 11 orthologous maize-rice gene pairs found that previously defined regulatory motifs could be identified within short CNS but could not be distinguishe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014